N92-21528

INLET TECHNOLOGY = /i

Paul Kutschenreuter
General Electric
Cincinnati, OH

!

At hypersonic flight Mach numbers, particularly above Mo = 10, the inlet compression process
is no longer adiabatic, real gas chemistry takes on extra importance, and the combined effects of
entropy layer and viscous effects lead to highly nonuniform flow profile characteristics at the
combustor entrance.

At such conditions, "traditional” inlet efficiency parameters such as defined Figure 1 can be
unnecessarily cumbersome and/or somewhat lacking in their ability to appropriately characterize
the inlet flow and to provide: insight into resulting implications on propulsion system
performance. Recent experience suggests that use of Inlet Entropy increase as a hypersonic

inlet efficiency parameter has much to offer.

Table 1 illustrates that for a specified value of the inlet efficiency parameter, that scramjet inlet
"throat" properties such as are required for use in subsequent propulsion cycle calculations are
somewhat easier to calculate when Inlet Entropy increase is used.

As used in high Mach number scramjet cycle calculations, Figure 2 illustrates that the derivative
of propulsion system performance with inlet performance tends to be more linear with Inlet
Kinetic Energy Efficiency and Inlet Entropy increase. This is helpful in design trade studies.

Figure 3 illustrates the use of Inlet Entropy increase in the Mollier diagram format of Figure 1,
except that lines of constant contraction ratio rather than lines of constant static pressure are
used. Consequently, continuity is satisfied, which is helpful in parametric studies.

Figure 9 displays a "window of opportunity" on the Mollier diagram as bounded by an upper and
lower inlet contraction ratio levels and Inlet Entropy increase. Superimposed are the impact of
inviscid shock losses for ideal 3, 4, and 5 oblique shock compression injet systemms. "Viscous &
Bluntness Margin" then become the region to the right.

Figure 10 documents that the inlet shock losses are linear only with Inlet Entropy increase.
Such linearity is helpful to inlet designers in evolving initial flowpath geometry for specific
performance objectives.

Figure 11 illustrates how the previous 1-D approach can be extended to nonuniform scramjet
inlet throat profiles by rewriting the conservation equations in boundary layer integral parameter
format. '

Figure 12 presents parametric hypersonic inlet performance based on this flow profile

nonuniformity approach. Note in the first panel that the Inlet Entropy increase is also linear
with friction and leading edge bluntness drag losses. Since the conservation equations have been
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solved, the corresponding amount of inlet heat loss is also known; and should this be absorbed
by the slush hydrogen fuel mixture, the corresponding amount of available fuel heat sink used is
also known. '

The Figure 13 summary for a number of calculations such as in the previous figure indicates that
the Reynolds Analogy seems to apply quite well here. Consequently, inlet heat loss is also
reasonably linear with Inlet Entropy increase.

Thus we have seen that use of Inlet Entropy increase as an inlet efficiency parameter for
hypersonic applications seem to provide some advantages over the use of the more traditional
parameters.

Figure 1. Inlet Perlormance Parameters (Relerence 1).
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Table |. Calculation of Combustor Iniet Conditions Compared.
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Figure 2. Spscilic impulse versus Inlet Efficiency.
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Figure 3. “Moller” Diagram with Inlet Contraction Ratio Lines.
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Figure 10. Inle! Parameter Shock Loss Comparison.
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Figure 11. Nonuniform Prolile Mathod with Viscous and Bluniness Effects
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Figure 12. Inlet Performance Nomograph.
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Figure 13. “Modified” Reynolds Analogy Comparison.
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